Discussion. The refined atomic coordinates and equivalent isotropic thermal parameters of the non-H atoms are given in Table 1.* Distances and bond angles are listed in Table 2. The crystals are isostructural to those of $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]_{2} \mathrm{SnCl}_{6}$ determined by Berg \& Sotofte (1978). The Re, N and Cl atoms occupy special positions in the crystal. A stereoview of the crystal packing is shown in Fig. 1. The shortest $\operatorname{Re} \cdots \operatorname{Re}$ interatomic distances are 9.023 (2) \AA (12 neighbours) and 12.760 (2) \AA (6 neighbours). These fall between the comparable distances for $\left[\mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)_{4}\right]_{2} \mathrm{ReCl}_{6}$ and the alkali-metal salts $\mathrm{K}_{2} \mathrm{ReCl}_{6}$ and $\mathrm{Cs}_{2} \mathrm{ReCl}_{6}$ (Grundy \& Brown, 1970; Bettinelli, Di Sipio, Valle, Aschieri \& Ingletto, 1989). The Cl atoms occupy octahedral positions around the central Re atom, the $\mathrm{Cl}-\mathrm{Re}-\mathrm{Cl}$ angles being exactly 90°. In all other hexachlororhenates, although crystallographically significant, these angles only marginally deviate from 90°. The $\mathrm{Re}-\mathrm{Cl}$ distance of 2.360 (2) \AA also correlates well with other literature values.

The high temperature factors of the tetramethylammonium counterion indicate a thermal rigid-body motion around the central N atom similar to that reported for $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]_{2} \mathrm{SnCl}_{6}$ by Nielsen \& Berg

* Lists of structure factors, anisotropic thermal parameters and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55444 (4 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: LII000]
(1980). The reason for this rotational disorder compared with the other ammonium salts of hexachlororhenate may be due to a lack of hydro-gen-bonding potential between the Cl atoms and the counterion.

This work was supported by the VLAB Biotechnology project of the VRWB. RL received financial support from the IWONL. DM is a research associate of the NFWO. The authors also acknowledge the receipt of NATO grant No. 900270.

References

Bagnall, K. W., Brown, D. \& Coolton, R. (1964). J. Chem. Soc. 7, 3017.
Berg, R. W. \& Sotofte, I. (1978). Acta Chem. Scand. Ser. A, 32, 241-244.
Bettinellı, M., Di Sipio, L., Valle, G., Aschieri, C. \& Ingletto G. (1989). Z. Kristallogr. 188, 155-160.

Bettinelli, M., Flint, C. D. \& Ingletto, G. (1991). J. Mater. Chem. 1, 437.
Drück, U. (1972). Diplomarbeit. Philipps-Univ. Marburg, Germany.
Grundy, H. D. \& Brown, I. D. (1970). Can. J. Chem. 48, 1151-1154.
Jones, T. A. (1985). Methods Enzymol. 115, 157-171.
Nielsen, K. \& Berg, R. W. (1980). Acta Chem. Scand. Ser. A, 34, 153-154.
Roberts, P. \& Sheldrick, G. M. (1979). XANADU. Program for crystallographic calculations. Univ. of Cambridge, England.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Sperka, G. \& Mautner, F. (1988). Cryst. Res. Technol. 23, K109-K111.

Acta Cryst. (1993). C49, 233-236

Structure of Hexa- μ-acetato- $1 \kappa^{3} O: 2 \kappa^{3} O^{\prime} ; 2 \kappa^{3} O: 3 \kappa^{3} O^{\prime}$-bis(1,10-phenanthroline)$1 \kappa^{2} N^{1}, N^{10} ; 2 \kappa^{2} N^{1}, N^{10}$-trimanganese(II)

By Kazuhiko Tsuneyoshi

Taniguchi Ink Manufacturing Company Limited, 3950-3 Uchimoriya-cho, Mitsukaido-shi, Ibaraki 303, Japan
and Hidesaburo Kobayashi and Hiroshi Miyamae*
Department of Chemistry, Faculty of Science, Josai University, Keyakidai, Sakado-shi, Saitama 350-02, Japan
(Received 28 October 1991; accepted 15 June 1992)

Abstract. $\left[\mathrm{Mn}_{3}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{6}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right], \quad M_{r}=879.5$, monoclinic, $A 2 / a, a=26.414$ (3), $b=12.433$ (2), $c=$ 11.410 (2) $\AA, \beta=98.63$ (2) ${ }^{\circ}, V=3704.7$ (10) $\AA^{3}, Z=$ $4, D_{m}=1.576, \quad D_{x}=1.576 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda(\mathrm{Mo} \mathrm{K} \mathrm{\alpha})=$

[^0]0108-2701/93/020233-04\$06.00
$0.71069 \AA, \quad \mu=1.032 \mathrm{~mm}^{-1}, \quad F(000)=1796, \quad T=$ $298 \mathrm{~K}, R=0.073$ and $w R=0.063$ for 2142 observed reflections. In the linear trinuclear compound, one of the Mn atoms is on the twofold axis and is coordinated by six O atoms of the acetate ions with an average $\mathrm{Mn}-\mathrm{O}$ distance of 2.131 (8) \AA. The other
two Mn atoms have $\mathrm{N}_{2} \mathrm{O}_{3}$ distorted tetragonal pyramidal coordination with one N atom at the axial position, having an average $\mathrm{Mn}-\mathrm{N}$ distance of 2.269 (6) \AA and $\mathrm{Mn}-\mathrm{O}$ distances in the range 2.181 (5) to 2.353 (6) \AA.

Introduction. Manganese(II) carboxylate chemistry was widely developed by Christou and his coworkers in the last decade (Christou, 1989, and references therein). They examined mainly the biological relevance of this chemistry at the water oxidation/oxygen evolution center in the photosynthetic process of green plants and cyanobacteria. They were interested in the $\left[\mathrm{Mn}_{3} \mathrm{O}\right]$ complex because of its potential as a mixed-valence complex. On the other hand, manganese(II) carboxylate with a long alkyl chain was used as a 'drier' catalyst for paint and ink (Myers, 1962), after treatment with 1,10phenanthroline (phen). In order to study the catalytic behavior of manganese(II) carboxylate, we prepared a manganese(II) acetate-phen complex.

Experimental. 2 mmol of manganese acetate tetrahydrate was dissolved in 60 ml of ethanol. 2 mmol of 1,10-phenanthroline hydrate (powder) was added to the solution and stirred to make it homogeneous. After allowing the solution to stand for 24 h , yellow plate crystals were grown from the solution. The compound was dissolved in water where its color became brown. D_{m} by flotation in $\mathrm{CCl}_{4} / \mathrm{CHCl}_{3}$. Analytical data found: C 49.19, H 3.95, N 6.26\%; calculated for $\mathrm{C}_{36} \mathrm{H}_{34} \mathrm{Mn}_{3} \mathrm{~N}_{4} \mathrm{O}_{12}$: C 49.16, H 3.90, N 6.37\%.

A light-yellow crystal with dimensions ca 0.3×0.1 $\times 0.1 \mathrm{~mm}$ was used for data collection on a Rigaku AFC-5 four-circle diffractometer using graphitemonochromated Mo $K \alpha$ radiation. $\theta-2 \theta$ scan mode, scan range $(1.0+1 / 2 \tan \theta)^{\circ} .6218$ reflections $(2 \theta \leq$ $60^{\circ} ; h-37$ to $37, k 0$ to $17, l 0$ to 16) were measured, of which 5621 were independent. 2142 observed reflections with $|F| \geq 6 \sigma(|F|)$ were used for structure determination. Intensities were corrected for Lorentz and polarization effects but not for absorption and extinction. Unit-cell dimensions were obtained from least-squares fit of 252θ values ($25<$ $2 \theta<29^{\circ}$). 3 standard reflections measured every 150 measurements showed -5 to 1% fluctuation.

The structure was solved by direct methods using MULTAN78 (Main, Hull, Lessinger, Germain, Declercq \& Woolfson, 1978). Location of two independent Mn atoms and a phen molecule obtained from E map. All other non-H atoms from successive Fourier maps. H atoms from geometrical calculations. Minimized quantity $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}, w$ $=1 /\left[\sigma^{2}\left(F_{o}\right)+0.02 F_{o}^{2}\right]$. Number of refined parameters 254. Final $R=0.0725$ and $w R=0.0632, S=3.3385$, $(\Delta / \sigma)_{\max }<0.06$ for non-H atoms, max. and min. $\Delta \rho$
$=0.49$ and $-0.59 \mathrm{e} \AA^{-3}$, respectively. Slightly high R value might be connected with the large thermal motion of one acetate ion. Complex neutral atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV). Structure refinement and characterization were carried out using the UNICSIII program system (Sakurai \& Kobayashi, 1979) on a FACOM M-360 computer at Josai University. The final atomic coordinates with e.s.d.'s for non-H atoms are listed in Table 1* and the atomic numbering scheme is shown in Fig. 1.

Discussion. The structure of the compound is depicted in Fig. 1. Bond distances and angles around the Mn atoms are listed in Table 2. The central Mn atom is on a crystallographic twofold axis and is in a regular octahedral coordination $\left(\mathrm{O}_{6}\right)$ with an average $\mathrm{Mn}-\mathrm{O}$ bond distance of 2.131 (8) \AA, while the terminal Mn atoms are in a distorted tetragonal pyramid $\left(\mathrm{N}_{2} \mathrm{O}_{3}\right)$ with one of the N atoms in the axial position. The bond distances of the two $\mathrm{Mn}-\mathrm{N}$ bonds are similar, the average being 2.269 (6) \AA. However, the $\mathrm{Mn} 2-\mathrm{O} 2 A$ bond distance, which is cis with respect to the $\mathrm{Mn} 2-\mathrm{N} 2$ bond, is longer than the other two [average 2.183 (6) \AA] by about $0.17 \AA$. The Mn2-O1A distance of 2.508 (9) \AA is too long to be included in the coordination sphere. Thus each pair of Mn atoms is bridged by three bidentate μ-acetato ligands. In this structure, heptacoordinated Mn2 has its sixth coordination site directed toward the central Mnl atom. However, the $\mathrm{Mn} 1 \cdots \mathrm{Mn} 2$ distance is 3.394 (1) \AA which indicates hardly any $\mathrm{Mn} \cdots \mathrm{Mn}$ interaction.

Christou and his co-workers produced a similar Mn^{H} trinuclear complex, $\left[\mathrm{Mn}^{\mathrm{H}}{ }_{3}\left(\mathrm{O}_{2} \mathrm{CC}_{6} \mathrm{H}_{5}\right)_{6}(\mathrm{bpy})_{2}\right]$ (Christou, 1989; bpy $=2,2^{\prime}$-bipyridine). A linear trinuclear complex, $\left[\mathrm{Mn}_{3}{ }_{3}\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{6}(\text { biphme })_{2}\right]$ [biphme $=$ methoxybis $(1-$ methylimidazol-2-yl)-
phenylmethane], was recently reported by von Rardin, Bino, Poganiuch, Tolman, Liu \& Lippard (1990). In this complex, one third of the carboxylato ions are monodentate μ-carboxylates, the others being bidentate. The resulting coordination geometry around the terminal Mn atoms is trigonal bipyramidal with the pseudo- C_{3} axes defined by O (monodentate) $-\mathrm{Mn}-\mathrm{N}$ in the biphme complex. In the title structure, although both $\mathrm{O} 1 A$ and $\mathrm{O} 1 B$ atoms show large thermal motion, the thermal motion of acetate- A is greater in a direction almost

[^1]Table 1. Atomic coordinates ($\times 10^{5}$ for $\mathrm{Mn}, \times 10^{4}$ for $\mathrm{C}, \mathrm{O}, \mathrm{N})$ and equivalent isotropic temperature factors $\left(\AA^{2}\right)$ for the title compound
$B_{\text {eq }}=$ four thirds of the trace of the orthogonalized $B_{i j}$ tensor.

	x	y	z	$B_{\text {eq }}$
Mn1	75000	$24950(15)$	0	$2.75(4)$
Mn2	$62321(3)$	$25232(10)$	$2122(9)$	$2.77(3)$
N1	$5400(2)$	$2452(5)$	$469(4)$	$2.80(14)$
N2	$6031(2)$	$4178(5)$	$860(5)$	$2.78(16)$
C1	$5099(3)$	$1601(6)$	$286(7)$	$3.36(22)$
C2	$4605(3)$	$1570(6)$	$557(7)$	$3.76(23)$
C3	$4416(2)$	$2450(7)$	$1063(6)$	$3.78(20)$
C4	$4720(3)$	$3375(6)$	$1259(6)$	$2.96(20)$
C5	$4552(3)$	$4354(6)$	$1757(7)$	$3.98(24)$
C6	$4856(3)$	$5226(6)$	$1925(6)$	$3.65(23)$
C7	$5370(3)$	$5211(6)$	$1634(6)$	$3.21(21)$
C8	$5704(3)$	$6088(6)$	$1789(6)$	$3.69(23)$
C9	$6181(3)$	$6004(6)$	$1476(6)$	$3.76(24)$
C10	$6330(3)$	$5038(6)$	$1020(6)$	$3.67(23)$
C11	$5552(2)$	$4261(5)$	$1161(5)$	$2.44(18)$
C12	$5223(2)$	$3342(5)$	$951(6)$	$2.51(18)$
O1B	$6985(3)$	$1279(5)$	$-728(7)$	$9.24(28)$
O2B	$6231(2)$	$834(5)$	$-313(5)$	$5.35(19)$
C1B	$6645(3)$	$607(7)$	$-648(7)$	$4.09(24)$
C2B	$6752(3)$	$-516(7)$	$-981(7)$	$4.44(26)$
O1 A	$7096(4)$	$2536(6)$	$1474(7)$	$11.75(36)$
O2A	$6475(2)$	$1996(5)$	$2198(5)$	$5.96(20)$
C1 A	$6930(3)$	$2112(6)$	$2302(7)$	$3.89(24)$
C2A	$7263(4)$	$1773(8)$	$3361(9)$	$7.97(38)$
O1C	$6945(2)$	$3646(4)$	$-801(5)$	$6.11(20)$
O2C	$6169(2)$	$3165(4)$	$-1583(4)$	$3.75(16)$
C1C	$6595(3)$	$3610(6)$	$-1660(6)$	$3.27(21)$
C2C	$6655(4)$	$4086(7)$	$-2814(8)$	$5.77(32)$

Table 2. Selected interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$

$\mathrm{Mn} 1-\mathrm{O} 1 B$	$2.118(7)$	$\mathrm{Mn} 1-\mathrm{O} 1 A$	$2.124(9)$	$\mathrm{Mn} 1-\mathrm{O} 1 C$	$2.152(6)$
$\mathrm{Mn} 2-\mathrm{O} 2 B$	$2.184(6)$	$\mathrm{Mn} 2-\mathrm{O} 2 A$	$2.353(6)$	$\mathrm{Mn} 2-\mathrm{O} 2 C$	$2.181(5)$
$\mathrm{Mn} 2-\mathrm{N} 1$	$2.263(5)$	$\mathrm{Mn} 2-\mathrm{N} 2$	$2.275(6)$	$\mathrm{Mn} 2 \cdots \mathrm{O} 1 A$	$2.508(9)$
$\mathrm{Mn} 1 \cdots \mathrm{Mn} 2$	$3.394(1)$				
$\mathrm{O} 1 B-\mathrm{Mnl}-\mathrm{O} 1 A$	$87.6(3)$	$\mathrm{O} 1 B-\mathrm{Mnl}-\mathrm{O} 1 C$	$87.2(2)$		
$\mathrm{O} 1 B-\mathrm{Mn}-\mathrm{O} 1 B^{\mathrm{i}}$	$88.9(3)$	$\mathrm{O} 1 B-\mathrm{Mnl}-\mathrm{O} 1 A^{\mathrm{i}}$	$94.4(3)$		
$\mathrm{O} 1 B-\mathrm{Mnl-O1C}^{\mathrm{i}}$	$176.1(2)$	$\mathrm{O} 1 A-\mathrm{Mn}-\mathrm{OlC}$	$86.0(3)$		
$\mathrm{O} 1 A-\mathrm{Mn} 1-\mathrm{O} 1 A^{\mathrm{i}}$	$177.2(3)$	$\mathrm{O} 1 A-\mathrm{Mn} 1-\mathrm{O} 1 C$	$92.3(3)$		
$\mathrm{O} 1 C-\mathrm{Mn} 1-\mathrm{O} 1 C^{\mathrm{i}}$	$96.6(2)$	$\mathrm{O} 2 B-\mathrm{Mn} 2-\mathrm{O} 2 A$	$89.1(2)$		
$\mathrm{O} 2 B-\mathrm{Mn} 2-\mathrm{O} 2 C$	$95.6(2)$	$\mathrm{O} 2 B-\mathrm{Mn} 2-\mathrm{N} 1$	$92.1(2)$		
$\mathrm{O} 2 B-\mathrm{Mn} 2-\mathrm{N} 2$	$165.4(2)$	$\mathrm{O} 2 A-\mathrm{Mn} 2-\mathrm{O} 2 C$	$167.8(2)$		
$\mathrm{O} 2 A-\mathrm{Mn} 2-\mathrm{N} 1$	$89.7(2)$	$\mathrm{O} 2 A-\mathrm{Mn} 2-\mathrm{N} 2$	$89.0(2)$		
$\mathrm{O} 2 C-\mathrm{Mn} 2-\mathrm{N} 1$	$101.4(2)$	$\mathrm{O} 2 C-\mathrm{Mn} 2-\mathrm{N} 2$	$89.2(2)$		
$\mathrm{N} 1-\mathrm{Mn} 2-\mathrm{N} 2$	$73.4(2)$				

Symmetry code: (i) $\frac{3}{2}-x, y,-z$.
parallel to $\mathrm{Mn} 2 \cdots \mathrm{Mn}$. This might indicate the possibility of bridging and dangling $\mathrm{Mn}-\mathrm{O}$ distances as the carboxylate ligand moves from the bidentate bridging toward a monodentate bridging scheme which is the opposite of that proposed by von Rardin et al. (1990). The Mn2-O2A and $\mathrm{Mn} 2-\mathrm{O} 1 A$ distances are much longer than those of the other $\mathrm{Mn}-\mathrm{O}$ bonds, while all $\mathrm{Mn}-\mathrm{O}$ bond distances in $\left[\mathrm{Mn}_{3}\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{6}(\text { biphme })_{2}\right]$ are in the range 2.120 (6) to 2.242 (6) \AA. The mobility of the carboxylate ligand, which could be controlled by
crystal packing, might be the reason that this compound is used as an oxidative polymerization catalyst in the drying of paint and ink.

Fig. 1. Molecular structure of $\left[(\right.$ phen $) \mathrm{Mn}(\mu \text {-acetato })_{3} \mathrm{Mn}(\mu-$ acetato) ${ }_{3} \mathrm{Mn}$ (phen)]. ORTEP (Johnson, 1976) drawing showing 50% probability thermal ellipsoids.

Fig. 2. Crystal packing diagram viewed along b.

The packing diagram is shown in Fig. 2. The molecules are packed so that the molecular planes of the phen ligand are almost parallel to the $a b$ plane. It is interesting that only the acetate- A group, with its molecular plane almost in the $a c$ plane and perpendicular to that of the phen molecule, has the greatest degree of mobility among the acetate groups in the crystal. From the thermal ellipsoids of $\mathrm{O} 1 A$ and $\mathrm{C} 2 A$, it is apparent that the acetate- A group is dangling only within its molecular plane. The other chemically equivalent acetate, acetate- C, shows no such thermal motion. The ligand may be fixed in the crystal by the packing mode.

References

Christou, G. (1989). Acc. Chem. Res. 22, 328-335.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Main, P., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1978). MULTAN78. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Myers, R. R. (1962). Off. Dig. Fed. Soc. Paint Technol. 34, 575.
rardin, R. L., von, bino, A., Poganiuch, P., Tolman, W. B., Liu, S. \& Lippard, S. J. (1990). Angew. Chem. Int. Ed. Engl. 29, 812-814.
Saklrai, T. \& Kobayashi, K. (1979). Rikagaku Kenkyusho Hokoku, 55, 69-72.

Acta Cryst. (1993). C49, 236-238

Structure of Chloro($\alpha, \boldsymbol{\beta}, \boldsymbol{\gamma}, \boldsymbol{\delta}$-tetraphenylporphinato)manganese(III) Toluene Solvate

By Robert S. Armstrong, Garry J. Foran and Trevor W. Hambley*
Department of Inorganic Chemistry, University of Sydney, Sydney 2006, Australia

(Received 1 November 1991; accepted 30 June 1992)

Abstract

Mn}\left(\mathrm{C}_{44} \mathrm{H}_{28} \mathrm{~N}_{4}\right) \mathrm{Cl}\right] . \mathrm{C}_{7} \mathrm{H}_{8}, \quad M_{r}=795.27\), monoclinic, $P 2_{1} / m, a=9.918$ (2), $b=15.395$ (3), $c=$ 13.453 (2) $\AA, \beta=103.68$ (1) ${ }^{\circ}, V=1995.8$ (6) $\AA^{3}, Z=$ 2, $D_{x}=1.323 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda($ Mo $K \alpha)=0.71069 \AA, \mu=$ $3.91 \mathrm{~cm}^{-1}, F(000)=824, T=294 \mathrm{~K}$, final $R=0.034$ for 3049 reflections. The manganese complex and the toluene molecule lie on a crystallographic mirror plane. The Mn atom is coordinated by a chloro ligand and a tetraphenylporphinato ligand in an approximate square-pyramidal arrangement with the latter ligand deformed to give a saddle conformation. The $\mathrm{Mn}-\mathrm{Cl}$ and $\mathrm{Mn}-\mathrm{N}(\mathrm{av}$.) bond lengths are 2.345 (1) and $2.015 \AA$, respectively. The toluene molecule lies perpendicular to the plane of the porphinato ligand and makes its closest contacts with pyrrole atoms.

Introduction. Manganese porphyrin complexes have been the subject of much study because of their biological and photochemical importance. During a study of the spectroelectrochemistry of derivatives of $\mathrm{Mn}^{\mathrm{II}}$ porphyrin complexes, we isolated the title compound and determined its structure. The structure of the complex has been determined previously as the acetone solvate (Tulinsky \& Chen, 1977) but the present study is more precise and reveals a number of small but significant differences in the geometry about the Mn atom.

[^2]0108-2701/93/020236-03\$06.00

Experimental. A crystal was mounted on a glass fibre with epoxy resin. Data were collected on an EnrafNonius CAD-4 automatic diffractometer using graphite-monochromated Mo $K \alpha$ radiation. 25 independent reflections with $2<2 \theta<30^{\circ}$ were used for least-squares determination of cell constants. Intensities of three reflections were monitored, and indicated less than 1.0% decomposition. The structure was solved by direct methods using SHELXS86 (Sheldrick, 1985) and refined by full-matrix least squares using SHELX76 (Sheldrick, 1976). Non-H atoms were refined with anisotropic thermal parameters. The positions of H atoms were calculated assuming planar or tetrahedral geometry with a constrained $\mathrm{C}-\mathrm{H}$ distance of $0.97 \AA$ and their thermal parameters were refined isotropically either individually or in groups. At convergence, all shifts were $<0.1 \sigma$. Maximum excursions in a final difference map were 0.2 and $-0.2 \mathrm{e} \AA^{-3}$. Data reduction and application of corrections for absorption were carried out using the Enraf-Nonius SDPPlus Structure Determination Package (Frenz, 1985). All other calculations were performed using the program SHELX76 (Sheldrick, 1976). A drawing of the title complex was produced using the program ORTEP (Johnson, 1965). Scattering factors and anomalous-dispersion terms for Mn (treated as neutral Mn) were taken from International Tables for X-ray Crystallography (1974, Vol. IV). The values supplied in SHELX76 were used for all other atoms.
© 1993 International Union of Crystallography

[^0]: * To whom correspondence should be addressed.

[^1]: * Lists of observed and calculated structure amplitudes, anisotropic thermal parameters for non- H atoms, parameters for H atoms and bond distances and angles have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55518 (16 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: AS0573]

[^2]: * Author to whom correspondence should be addressed.

